Hermite Interpolation Between 2 Points

Problem Setting

In general, the term "Hermite interpolation" refers to interpolation by means of a polynomial that passes through a given number of sample points $\left(x_{i}, y_{i}\right)$ and also satisfies constraints on some number of derivatives $y_{i}^{\prime}, y_{i}^{\prime \prime}, \ldots$ at these sample points. Here, we consider the problem of finding a polynomial that goes through the two points $\left(x_{0}=0, y_{0}\right)$ and $\left(x_{1}=1, y_{1}\right)$. In addition to prescribe the function values y_{0}, y_{1}, we also prescribe values for some number of derivatives $y_{0}^{\prime}, y_{1}^{\prime} ; y_{0}^{\prime \prime}, y_{1}^{\prime \prime} ;$ etc.. Our particular choice of the x coordinates has been made to keep the formulas simple. However, if we want to have arbitrary x-coordinates for the endpoints, say $x_{\min }, x_{\max }$, we may simply transform the input value for the polynomial by $\tilde{x}=$ $\left(x-x_{\min }\right) /\left(x_{\max }-x_{\min }\right)$. Our new variable \tilde{x} will then pass through the range $0, \ldots, 1$ when the original x passes through $x_{\min }, \ldots, x_{\max }$. The number of derivatives that we want to control dictates the order of the polynomial that we have to use. In order to be able to prescribe values for M derivatives, we need a polynomial of order $N=2 M+1$.

Derivation for the 7th Order Case

To illustrate the procedure to compute the polynomial coefficients, we consider - as example - the case where we control $M=3$ derivatives. This calls for a 7 th order polynomial. In the following derivation, the framed equations are those that we actually need for the implementation. Our interpolating polynomial and its first 3 derivatives have the general form:

$$
\begin{align*}
y & =a_{7} x^{7}+a_{6} x^{6}+a_{5} x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0} \\
y^{\prime} & =7 a_{7} x^{6}+6 a_{6} x^{5}+5 a_{5} x^{4}+4 a_{4} x^{3}+3 a_{3} x^{2}+2 a_{1} x+a_{1} \tag{1}\\
y^{\prime \prime} & =42 a_{7} x^{5}+30 a_{6} x^{4}+20 a_{5} x^{3}+12 a_{4} x^{2}+6 a_{3} x+2 a_{1} \\
y^{\prime \prime \prime} & =210 a_{7} x^{4}+120 a_{6} x^{3}+60 a_{5} x^{2}+24 a_{4} x+6 a_{3}
\end{align*}
$$

To satisfy our constraints at the left endpoint $x_{0}=0$, we put in $x=0$ on the right hand sides and $y_{0}, y_{0}^{\prime}, y_{0}^{\prime \prime}, y_{0}^{\prime \prime \prime}$ on the left hand sides, and we immediately obtain $a_{0}, a_{1}, a_{2}, a_{3}$:

$$
\begin{equation*}
y_{0}=a_{0}, \quad y_{0}^{\prime}=a_{1}, \quad y_{0}^{\prime \prime}=2 a_{2}, \quad y_{0}^{\prime \prime \prime}=6 a_{3} \tag{2}
\end{equation*}
$$

...for the actual implementation, you need to solve them for the a-coefficients (this is left for the reader as exercise ;-). To satisfy our constraints at the right endpoint $x_{1}=1$, we put in $x=1$ on the right hand sides and $y_{1}, y_{1}^{\prime}, y_{1}^{\prime \prime}, y_{1}^{\prime \prime \prime}$ on the left hand sides - we obtain 4 equations for the remaining 4 unknowns $a_{4}, a_{5}, a_{6}, a_{7}$:

$$
\begin{align*}
y_{1} & =a_{7}+a_{6}+a_{5}+a_{4}+a_{3}+a_{2}+a_{1}+a_{0} \\
y_{1}^{\prime} & =7 a_{7}+6 a_{6}+5 a_{5}+4 a_{4}+3 a_{3}+2 a_{2}+a_{1} \tag{3}\\
y_{1}^{\prime \prime} & =42 a_{7}+30 a_{6}+20 a_{5}+12 a_{4}+6 a_{3}+2 a_{2} \\
y_{1}^{\prime \prime \prime} & =210 a_{7}+120 a_{6}+60 a_{5}+24 a_{4}+6 a_{3}
\end{align*}
$$

bringing the already known $a_{0}, a_{1}, a_{2}, a_{3}$ to the left side:

$$
\begin{align*}
y_{1}-a_{3}-a_{2}-a_{1}-a_{0} & =a_{7}+a_{6}+a_{5}+a_{4} \\
y_{1}^{\prime}-3 a_{3}-2 a_{2}-a_{1} & =7 a_{7}+6 a_{6}+5 a_{5}+4 a_{4} \tag{4}\\
y_{1}^{\prime \prime}-6 a_{3}-2 a_{2} & =42 a_{7}+30 a_{6}+20 a_{5}+12 a_{4} \\
y_{1}^{\prime \prime \prime}-6 a_{3} & =210 a_{7}+120 a_{6}+60 a_{5}+24 a_{4}
\end{align*}
$$

for convenience, we define constants $k_{0}, k_{1}, k_{2}, k_{3}$ for the 4 left hand sides of the equations:

$$
\begin{align*}
& k_{0}=y_{1}-a_{3}-a_{2}-a_{1}-a_{0} \tag{5}\\
& k_{1}=y_{1}^{\prime}-3 a_{3}-y_{0}^{\prime \prime}-a_{1} \\
& k_{2}=y_{1}^{\prime \prime}-y_{0}^{\prime \prime \prime}-y_{0}^{\prime \prime} \\
& k_{3}=y_{1}^{\prime \prime \prime}-y_{0}^{\prime \prime \prime} \\
& \hline
\end{align*}
$$

where we have also used that $6 a_{3}=y_{0}^{\prime \prime \prime}$ and $2 a_{2}=y_{0}^{\prime \prime}$. Our system of equations now becomes:

$$
\begin{align*}
& k_{0}=a_{7}+a_{6}+a_{5}+a_{4} \\
& k_{1}=7 a_{7}+6 a_{6}+5 a_{5}+4 a_{4} \\
& k_{2}=42 a_{7}+30 a_{6}+20 a_{5}+12 a_{4} \tag{6}\\
& k_{3}=210 a_{7}+120 a_{6}+60 a_{5}+24 a_{4}
\end{align*}
$$

finally, solving this system for the remaining 4 unknowns $a_{4}, a_{5}, a_{6}, a_{7}$ gives:

$$
\begin{align*}
& a_{4}=\frac{-k_{3}+15 k_{2}-90 k_{1}+210 k_{0}}{6} \tag{7}\\
& a_{5}=-\frac{-k_{3}+14 k_{2}-78 k_{1}+168 k_{0}}{2} \\
& a_{6}=\frac{-k_{3}+13 k_{2}-68 k_{1}+140 k_{0}}{2} \\
& a_{7}=-\frac{-k_{3}+12 k_{2}-60 k_{1}+120 k_{0}}{6}
\end{align*}
$$

Results for Some Other Cases

Having seen the derivation for the 7 th order case, it shall suffice for other cases to just give the results. Here we go:

1st order case

$$
\begin{equation*}
a_{0}=y_{0}, \quad a_{1}=y_{1}-y_{0} \tag{8}
\end{equation*}
$$

3rd Order Case

$$
\begin{gather*}
a_{0}=y_{0}, \quad a_{1}=y_{0}^{\prime} \tag{9}\\
k_{0}=y_{1}-a_{1}-a_{0}, \quad k_{1}=y_{1}^{\prime}-a_{1} \tag{10}\\
a_{2}=3 k_{0}-k_{1}, \quad a_{3}=k_{1}-2 k_{0} \tag{11}
\end{gather*}
$$

5th Order Case

$$
\begin{align*}
& a_{0}=y_{0}, \quad a_{1}=y_{0}^{\prime}, \quad a_{2}=\frac{y_{0}^{\prime \prime}}{2} \tag{12}\\
& k_{0}=y_{1}-a_{2}-a_{1}-a_{0}, \quad k_{1}=y_{1}^{\prime}-y_{0}^{\prime \prime}-a_{1}, \quad k_{2}=y_{1}^{\prime \prime}-y_{0}^{\prime \prime} \tag{13}\\
& a_{3}=\frac{k_{2}-8 k_{1}+20 k_{0}}{2}, \quad a_{4}=-k_{2}+7 k_{1}-15 k_{0}, \quad a_{5}=\frac{k_{2}-6 k_{1}+12 k_{0}}{2} \tag{14}
\end{align*}
$$

The General Case

For the general case, where we control M derivatives by using a polynomial of order $N=2 M+1$, a general pattern emerges. The polynomial coefficients a_{n} for powers up to M can be computed straightforwardly via:

$$
\begin{equation*}
a_{n}=\frac{y_{0}^{(n)}}{n!}, \quad n=0, \ldots, M \tag{15}
\end{equation*}
$$

where $y^{(n)}$ denotes the $n-t h$ derivative of y, the $0-t h$ derivative is the function itself. Now, we establish a vector $\mathbf{k}=\left(k_{0}, \ldots, k_{M}\right)$ of $M+1 k$-values, whose element k_{n} is given by:

$$
\begin{equation*}
k_{n}=y_{1}^{(n)}-\sum_{i=n}^{M} \alpha_{n, i} a_{i} \quad n=0, \ldots, M \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{n, i}=\prod_{m=i-n+1}^{i} m \tag{17}
\end{equation*}
$$

Note that for this product to work in general, we must make use the definition of the empty product: $\prod_{i=n}^{N} a_{i}=1$, for $N<n$, i.e. when the end-index is lower than the start-index. We also establish a $(M+1) \times(M+1)$ matrix \mathbf{A}, whose element $A_{i, j}$ is given by:

$$
\begin{equation*}
A_{i, j}=\prod_{m=M+j-i+2}^{M+j} m \tag{18}
\end{equation*}
$$

Now, we collect our remaining unknowns a_{M+1}, \ldots, a_{N} into the vector \mathbf{a}, such that: $\mathbf{a}=\left(a_{M+1}, \ldots, a_{M}\right)$. The system of equations for the remaining unknowns may now be expressed as the matrix equation:

$$
\begin{equation*}
\mathbf{k}=\mathbf{A} \mathbf{a} \tag{19}
\end{equation*}
$$

Numerically solving this equation for a (for example by Gaussian elimination) yields the remaining polynomial coefficients a_{M+1}, \ldots, a_{N}. [Question to self: can a simpler solution be derived that avoids the need for the general linear system solver?]

