
RESONANCE TUNING FOR THE DIGITAL MOOG FILTER

Resonance Tuning for the digital Moog Filter

A one pole digital filter has the z-plane transfer function:

G1(z) =
b0

1 + a1z−1
(1)

When we model the Moog filter (excluding resonance) with a series connection of 4 such filters, we get the
transfer function:

G4(z) =
(
G1(z)

)4
=

(
b0

1 + a1z−1

)4

(2)

The resonance is introduced by feeding the filters (sign inverted) output back to the input. In the digital
domain, we must include a unit delay into the feedback path corresponding to a factor of z−1. With
feedback gain k, we obtain the net transfer function:

H(z) =
G4(z)

1 + k · z−1 ·G4(z)
(3)

With such a feedback, we obtain a resonant peak at that frequency where the phase response of z−1G4(z)
goes through −180 degrees (or −π). The analog Moog filter runs into self oscillation with a feedback factor
of k = 4 because the magnitude response of the filter (without feedback) at the resonant frequency is 1/4
- such that the net feedback gain becomes unity with k = 4. In the analog domain, the resonant frequency
(the -180 degree frequency) happens to be the same frequency as the cutoff-frequency (measured at the -3
dB point) of each one of the 4 first order filter stages. In the digital domain this is not true anymore because
the unit delay in the feedback path adds to phase delay such that the resonant frequency detoriates from
the individual 1st order cutoff frequencies. This is particularly true for high cutoff frequencies. Because
the resonant frequency is now different from the cutoff frequency, it is also not true anymore that the
G4-filters gain (without feedback applied) is equal to 1/4 at the resonant frequency. This has the effect
that self-oscillation does not occur at k = 4 anymore, but we must choose a higher k. It seems to be
convenient to introduce a resonance parameter r normalized to the range 0...1 - in the case of the analog
Moog filter we would the simply put k = 4r for the feedback gain. In the digital domain the calculation
of the feedback gain from the resonance will be a bit more involved, as we will see. To carry the filter over
into the digital to domain, is seems to be desirable to have the following properties:

1. the filters (normalized radian) cutoff frequency ωc is defined as the frequency at which the resonant
peak occurs: ∠

(
z−1G4(z)

)∣∣
z=ejωc

= −π

2. the filter goes into self oscillation with r = 1, so we will have to adjust the feedback gain k in such
a way that it exactly compensates the magnitude response of the 4 stage ladder at r = 1

The One-Pole Coefficients b0, a1

The general expression for the magnitude response of a first order digital filter is:

|H(ejω)| =

√
b20 + b21 + 2b0b1 cos(ω)

a2
0 + a2

1 + 2a0a1 cos(ω)
(4)
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For our one pole filter G1 with a0 = 1 and b1 = 0 this simplifies to (evaluated at ω = ωc):

|G1(e
jωc)| =

√
b20

1 + a2
1 + 2a1 cos(ωc)

(5)

The general expression for the phase response of a first order filter is:

∠H(ejω) = arctan

(
− (a0b1 − a1b0) sin(ω)

a0b0 + a1b1 + (a0b1 + a1b0) cos(ω)

)
(6)

again, with a0 = 1 and b1 = 0 this simplifies to (evaluated at ω = ωc):

∠G1(e
jωc) = arctan

(
a1 sin(ωc)

1 + a1 cos(ωc)

)
(7)

which does not depend on b0 anymore. This is perhaps not surprising, because b0 can as well be interpreted
as a global gain factor which of course can affect only the magnitude response but not the phase response.
Because phases add in a series connection, the phase response of G4 is four times this value: ∠G4(e

jωc) =
4 · ∠G1(e

jωc). Additionally, we must add the phase response from linear phase term e−jω from the unit
delay (which is −ωc). The requirement ∠

(
z−1G4(z)

)∣∣
z=ejωc

= −π becomes:

4 · ∠G1(e
jωc)− ωc = −π (8)

and so we must solve:

arctan

(
a1 sin(ωc)

1 + a1 cos(ωc)

)
=
−π + ωc

4
(9)

or equivalently:
a1 sin(ωc)

1 + a1 cos(ωc)
= tan

(
ωc − π

4

)
(10)

Defining:

s = sin(ωc), c = cos(ωc), t = tan

(
ωc − π

4

)
(11)

and solving for a1 gives the result:

a1 =
t

s− ct
(12)

We can now calculate the b0 coefficient from the condition that b0 and −a1 sum up to unity - that is, we
want our G1 filter to be a leaky integrator of the general form y[n] = cx[n] + (1− c)y[n− 1], so we obtain:

b0 = 1 + a1 (13)
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The Feedback Gain k

The gain in the feedback path k is adjusted such that self oscillation occurs when the resonance parameter
is unity. To get that, we must divide the resonance parameter r by the magnitude response of the 4-stage
filter at the resonance frequency ωc (without feedback applied), thus we calculate:

g1 =

√
b20

1 + a2
1 + 2a1 cos(ωc)

, g4 = g4
1, k =

r

g4

(14)

But we can get rid of the square root and simplify this further into

g2
1 =

b20
1 + a2

1 + 2a1c
, k =

r

(g2
1)2

(15)

Compensating low frequency losses

When we turn up the resonance of the filter, we observe a drop of the gain at the low frequencies, The idea
is now to compensate these losses with a first order low shelving filter which boosts the low frequencies by
a factor which is reciprocal to the magnitude response of the filter at DC. So we must now evaluate the
magnitude response of the complete filter (with resonance) at DC. The complex transfer function for our
4-stage filter with resonance can be evaluated as:

H(z) =
G4(z)

1 + k · z−1 ·G4(z)
=

b40
1 + (b40k + 4a1)z−1 + 6a2

1z
−2 + 4a3

1z
−3 + a4

1z
−4

(16)

the real and imaginary part of the denominator of the corresponding frequency response are given by:

dr = a4
1 cos(4ω) + 4a3

1 cos(3ω) + 6a2
1 cos(2ω) + (b40k + 4a1) cos(ω) + 1

di = a4
1 sin(4ω) + 4a3

1 sin(3ω) + 6a2
1 sin(2ω) + (b40k + 4a1) sin(ω)

(17)

With these definitions, we can now write down the squared magnitude response as:∣∣H(ejω)
∣∣2 = H(ejω)H∗(ejω) =

b40b
4
0

(dr + jdi)(dr − jdi)
=

b80
d2

r + d2
i

(18)

Taking the square root of that value gives us the desired magnitude response at some arbitrary normalized
radian frequency ω: ∣∣H(ejω)

∣∣ =

√
b80

d2
r + d2

i

=
b40√
d2

r + d2
i

(19)

Matters become simpler when we evaluate this magnitude response at DC, in which case ω = 0. In this
case, all the cosine terms evaluate to 1 and the sine terms evaluate to 0, so we obtain:

dr = a4
1 + 4a3

1 + 6a2
1 + 4a1 + b40k + 1

di = 0
(20)

di becoming zero has the additional advantage that now the square-root cancels with the square. For
efficient implementation, we may use Horner’s rule to rewrite dr as:

dr = (((a1 + 4)a1 + 6)a1 + 4)a1 + b40k + 1 (21)
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and then we may evaluate the gain at DC as:

∣∣H(ejω)
∣∣
ω=0

=
b40
dr

(22)

Now that we know the magnitude at DC, it is a simple matter to throw in a first order low shelving
filter with a DC-boost reciprocal to the value so obtained and with corner frequency adjusted somewhere
below the filters cutoff/resonance frequency - for example, two octaves below. Or simply compensate by
an overall gain factor.

Optimization of the calculations

The calculations in equation 11, which is repeated here:

s = sin(ωc), c = cos(ωc), t = tan

(
ωc − π

4

)
(23)

would normally require the calculation of three transcendental functions - however, the sine and cosine
of the same argument can usually be calculated at once, leaving only the tangent of (ωc − π)/4 to be
additionaly calculated. But we may avoid this calculation, too by defining:

ω4 =
ωc

4
, s4 = sin(ω4), c4 = cos(ω4), t4 = tan(ω4) =

s4

c4
(24)

and note that:
t = tan

(
ω4 −

π

4

)
(25)

now we calculate the sine and cosine of ω4 at once, and obtain the tangent via division and apply the
reduction formula:

tan
(
x− π

4

)
=

tanx− 1

1 + tan x
(26)

to obtain our value t:

t =
t4 − 1

1 + t4
(27)

The values s, c can be obtained via the multiple angle formulas:

sin 4x = 4 cos x(sinx− 2 sin3 x), cos 4x = 1− 8 cos2 x+ 8 cos4 x (28)

by identifying x with ω4 = ωc/4 and 4x with ωc:

s = 4c4(s4 − 2s3
4), c = 1− 8c24 + 8c44 (29)

which saves us the additional tangent calculation at the expense of two divisions and a couple of multipli-
cations and additions - if this is worthwhile might depend on the machine.
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