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We consider a generalization of the Hadamard transform that contains 4 freely adjustable parameters and
still can use the same efficient computational structure that is used for the fast Hadamard transform.
By imposing some relations between the 4 parameters, we will obtain a two-parametric family of unitary
transforms that are suitable for use in a feedback delay network (FDN) for artificial reverberation. Even-
tually, we’ll also relate the two remaining parameters to ultimately arrive at a one-parametric family of
unitary transforms.

The Hadamard Transform

Following [1], we’ll define the Hadamard transform as a transformation of an input vector x to an output
vector y via a multiplication with a matrix Hy, where the index L is the base-2 logarithm of the size of

the matrix:
y=H; x (1)

The smallest transformation that makes sense is the case for L = 1, such that the size of the matrix is
N = 2! = 2. This most basic transform matrix is given by:
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Subsequent higher order matrices are obtained by applying a recursive construction using H; as seed. This
is known as the Sylvester construction and proceeds as follows:
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...well, formally one could also start this recursion with the scalar-matrix Hq = 1.

The Generalization

We generalize the construction above by starting with an arbitrary seed matrix for the L = 1 case, such

that:
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where we have 4 free parameters a, b, ¢, d. The recursive construction of higher order matrices proceeds as

follows:
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from which we easily see, that the whole thing reduces to the standard Sylvester construction for a = b =
c=1,d=-1.

The Fast Algorithm

The nice thing about a so constructed matrix is, that the matrix-vector multiplication y = M x can be
carried out in O(N - L) = O(N - log,(N)) operations via the algorithm (in pseudo MatLab/Octave):

for i=1:L
for j=1:N/2
y(j) = a*xx(2xj-1) + b*xx(2xj);
y(j+N/2) = c*xx(2*%j-1) + d*x(2%j);
end

X = y; % reused for intermediate result
end

With a = b= c=1,d = —1, this algorithm reduces to the fast Hadamard transform (without scaling and
sequency-based ordering) and the multiplications inside the inner loops could be thrown away due to the
fact that the factors would reduce to +1.

The Inverse Transform

For the L = 1 case, which transforms a 2-dimensional vector, the matrix that produces the inverse
transform can be calculated directly via:
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M;" = D (—c . ) where D, = det(My) = ad — bc (6)
from which we conclude that M; must be non-singular (i.e. the determinant D; must be non-zero). This
is the general condition for the existence of an inverse matrix. Let us denote the elements of the inverse
matrix as a;, b;, ¢;, d;, so we can write:
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As it turns out, we may also construct the inverses of the higher-order inverse matrices M; ', L > 1 via the
very same recursive construction that we have used to construct the matrices for the forward transform.
That is, we may construct M7}, from M;' via:
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which implies that we may use the same fast algorithm to compute the inverse transform, but with
a;, b;, c;, d; instead of a, b, c,d. As of yet, i have not derived formal proof for this but experiments indicate
that it indeed works like that.



Imposing Restrictions on the Parameters

So far, we may choose a, b, ¢, d arbitrarily. If we impose some restrictions on this choice, we get matrices
that have some properties that are desirable for a feedback matrix in an FDN. Specifically, if the parameters
have the either the relationship (1) : ¢ = b,d = —a or (2) : ¢ = —b,d = a, the matrix M will satisfy
MTM; = diag(k) for some constant k that depends on a and b via the formula:

k= (a*+ b*)" 9)

To obtain an unitary transform, we would have to scale the whole matrix by 1/v/k. In terms of the fast
algorithm, this just means that we scale our resulting vector with that value. A further specialization of
the first case to a = b = 1 again reduces to the standard Hadamard transform. Let’s have a closer look at
the 2nd case. We use the seed matrix:
a b
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The next matrix M, looks like:
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from which we see that the main diagonal is solely populated with a?, the other diagonal is populated
with £b% and the off-diagonal elements are populated by the cross-terms. By inspection, we may convince
ourselves that for M3, we would see a® on the main diagonal, +b® on the other diagonal and it goes on
that way for higher order matrices.

Application in an FDN

Even with one of the two restrictions on the choices for a, b, ¢, d, as described above, we still have obtained
a two-parametric family of unitary transforms (assuming that we do the division by 1/ \/E) We may
voluntarily further reduce the number of free parameters down to a single parameter by somehow relating
a and b. For example, we could use a = cos(¢), b = sin(¢) in which case the normalization constant k also
reduces to unity. The second case for the restriction: ¢ = —b,d = a, together with the parameterization
via ¢ could be an interesting choice to be used in a feedback delay network for artificial reverberation.
Via the parameter ¢, we would have a macro-parameter that allows us to control the amount of scattering
between the delaylines. For ¢ = nm,n € Z, there would be no scattering at all - the whole FDN would
reduce to a bank of parallel comb filters in this case. We can get a feeling for this by looking at equation
(11) when we realize that the diagonal terms produce self-feedback and the off-diagonal elements produce
cross-feedback. If |a| is unity and b is zero, which is the case for that choice of ¢, we see that there is
only self-feedback. The sign of a will determine whether these combs produce a full series of harmonics
(when a = +1 which is the case for even n) or only odd harmonics (for odd n, such that a = —1). By
using ¢ = § +nm,n € Z, there would only be some crossfeedback between pairs of delaylines (via the b?
elements). If, on the other hand, ¢ = 7 + nf,n € Z, which are the values of ¢ where sine and cosine

have equal absolute values (of 1/4/2), scattering is maximal as we would have a feedback matrix where all
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entries have the same absolute value. We could provide a ”scatter”, ”diffusion”, ”density” parameter to
the user by mapping some user input range (say p = 0%...100%) either to the range 0...7 or to the range
5---7- In the former case we would only see self-feedback for p = 0 and in the latter case we would only
see pairwise crossfeedback for p = 0. A FDN based on such a generalized Hadamard transform may also

lend itself well to modulation of the pole locations, because we can easily modulate ¢.
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