A Generalization of the Hadamard Transform

Robin Schmidt (www.rs-met.com)

August 3, 2011

We consider a generalization of the Hadamard transform that contains 4 freely adjustable parameters and
still can use the same efficient computational structure that is used for the fast Hadamard transform.
By imposing some relations between the 4 parameters, we will obtain a two-parametric family of unitary
transforms that are suitable for use in a feedback delay network (FDN) for artificial reverberation. Even-
tually, we’ll also relate the two remaining parameters to ultimately arrive at a one-parametric family of
unitary transforms.

The Hadamard Transform

Following [1], we’ll define the Hadamard transform as a transformation of an input vector x to an output
vector y via a multiplication with a matrix Hy, where the index L is the base-2 logarithm of the size of

the matrix:
y=H; x (1)

The smallest transformation that makes sense is the case for L = 1, such that the size of the matrix is
N = 2! = 2. This most basic transform matrix is given by:

H, = G —11) 2)

Subsequent higher order matrices are obtained by applying a recursive construction using H; as seed. This
is known as the Sylvester construction and proceeds as follows:

H, H
e (0) ®)

...well, formally one could also start this recursion with the scalar-matrix Hq = 1.

The Generalization

We generalize the construction above by starting with an arbitrary seed matrix for the L = 1 case, such

that:
()

where we have 4 free parameters a, b, ¢, d. The recursive construction of higher order matrices proceeds as

follows:
CLML bML)

ML+1 - (CML dML (5)

from which we easily see, that the whole thing reduces to the standard Sylvester construction for a = b =
c=1,d=-1.

The Fast Algorithm

The nice thing about a so constructed matrix is, that the matrix-vector multiplication y = M x can be
carried out in O(N - L) = O(N - log,(N)) operations via the algorithm (in pseudo MatLab/Octave):

for i=1:L
for j=1:N/2
y(j) = a*xx(2xj-1) + b*xx(2xj);
y(j+N/2) = c*xx(2*%j-1) + d*x(2%j);
end

X = y; % reused for intermediate result
end

With a = b= c=1,d = —1, this algorithm reduces to the fast Hadamard transform (without scaling and
sequency-based ordering) and the multiplications inside the inner loops could be thrown away due to the
fact that the factors would reduce to +1.

The Inverse Transform

For the L = 1 case, which transforms a 2-dimensional vector, the matrix that produces the inverse
transform can be calculated directly via:

1 (d -b
—1
M;" = D (—c .) where D, = det(My) = ad — bc (6)
from which we conclude that M; must be non-singular (i.e. the determinant D; must be non-zero). This
is the general condition for the existence of an inverse matrix. Let us denote the elements of the inverse
matrix as a;, b;, ¢;, d;, so we can write:

a; b d b c a
M =" 7 where a=—bj=——,¢,=——,di = — 7

1 (Ci dz) ! D17 ! D17 ! Dl ‘ D1 ()
As it turns out, we may also construct the inverses of the higher-order inverse matrices M; ', L > 1 via the
very same recursive construction that we have used to construct the matrices for the forward transform.
That is, we may construct M7}, from M;' via:

_ CLiM_l biM_l
ML~1H = <ci1\/[§1 diM%) (8)

which implies that we may use the same fast algorithm to compute the inverse transform, but with
a;, b;, c;, d; instead of a, b, c,d. As of yet, i have not derived formal proof for this but experiments indicate
that it indeed works like that.

Imposing Restrictions on the Parameters

So far, we may choose a, b, ¢, d arbitrarily. If we impose some restrictions on this choice, we get matrices
that have some properties that are desirable for a feedback matrix in an FDN. Specifically, if the parameters
have the either the relationship (1) : ¢ = b,d = —a or (2) : ¢ = —b,d = a, the matrix M will satisfy
MTM; = diag(k) for some constant k that depends on a and b via the formula:

k= (a*+ b*)" 9)

To obtain an unitary transform, we would have to scale the whole matrix by 1/v/k. In terms of the fast
algorithm, this just means that we scale our resulting vector with that value. A further specialization of
the first case to a = b = 1 again reduces to the standard Hadamard transform. Let’s have a closer look at
the 2nd case. We use the seed matrix:
a b
M, = 1
= (5 0) (10

a? ab ab b?

The next matrix M, looks like:

[aM; bWM;\ | —ab a* —b* ab
Mz = <—le al\/[l) “|-ab -0 @ ab (11)
> —ab —ab a®

from which we see that the main diagonal is solely populated with a?, the other diagonal is populated
with £b% and the off-diagonal elements are populated by the cross-terms. By inspection, we may convince
ourselves that for M3, we would see a® on the main diagonal, +b® on the other diagonal and it goes on
that way for higher order matrices.

Application in an FDN

Even with one of the two restrictions on the choices for a, b, ¢, d, as described above, we still have obtained
a two-parametric family of unitary transforms (assuming that we do the division by 1/ \/E) We may
voluntarily further reduce the number of free parameters down to a single parameter by somehow relating
a and b. For example, we could use a = cos(¢), b = sin(¢) in which case the normalization constant k also
reduces to unity. The second case for the restriction: ¢ = —b,d = a, together with the parameterization
via ¢ could be an interesting choice to be used in a feedback delay network for artificial reverberation.
Via the parameter ¢, we would have a macro-parameter that allows us to control the amount of scattering
between the delaylines. For ¢ = nm,n € Z, there would be no scattering at all - the whole FDN would
reduce to a bank of parallel comb filters in this case. We can get a feeling for this by looking at equation
(11) when we realize that the diagonal terms produce self-feedback and the off-diagonal elements produce
cross-feedback. If |a| is unity and b is zero, which is the case for that choice of ¢, we see that there is
only self-feedback. The sign of a will determine whether these combs produce a full series of harmonics
(when a = +1 which is the case for even n) or only odd harmonics (for odd n, such that a = —1). By
using ¢ = § +nm,n € Z, there would only be some crossfeedback between pairs of delaylines (via the b?
elements). If, on the other hand, ¢ = 7 + nf,n € Z, which are the values of ¢ where sine and cosine

have equal absolute values (of 1/4/2), scattering is maximal as we would have a feedback matrix where all

3

entries have the same absolute value. We could provide a ”scatter”, ”diffusion”, ”density” parameter to
the user by mapping some user input range (say p = 0%...100%) either to the range 0...7 or to the range
5---7- In the former case we would only see self-feedback for p = 0 and in the latter case we would only
see pairwise crossfeedback for p = 0. A FDN based on such a generalized Hadamard transform may also

lend itself well to modulation of the pole locations, because we can easily modulate ¢.

References

[1] Charles Constantine Gumas. A century old, the fast Hadamard transform proves useful in digital
communications

	The Hadamard Transform
	The Generalization
	The Fast Algorithm
	The Inverse Transform

	Imposing Restrictions on the Parameters
	Application in an FDN

