
ATTACK/DECAY ENVELOPE GENERATOR

Attack/Decay Envelope Generator

To generate a simple smooth attack/decay envelope in the continuous time domain, we may feed the
impulse-response of one RC-circuit into another RC-circuit. The first RC circuit can be seen as converting
the incoming impulse into an exponential decay, whereas the second can be thought of as smoothing
out the attack phase (rigorously, this is a somewhat arbitrary way of thinking about it, because (due to
commutativity of convolution) it would be equally valid to think it vice versa). Let impulse response for
the decay be given by:

xd(t) = u(t) · αde−αdt (1)

where αd = 1/τd, with τd being the time-constant of the RC circuit and u(t) is the unit step function.
Likewise, the impulse response of the second RC circuit is:

xa(t) = u(t) · αae−αat (2)

While giving a nice curve, the problem with this envelope generator is that the maximum excursion depends
on the values αa, αd. We would like to normalize it, such that the maximum excursion is always fixed at
unity. To find the proper normalization factor, we first need to find maximum excursion of the curve as is
- the normalization factor will then be the reciprocal of that value. The overall curve can be expressed as
the convolution of the two functions xd(t), xa(t):

x(t) = xd(t) ∗ xa(t) =

∫ ∞
−∞

xd(t− τ) · xa(τ) dτ =

∫ ∞
−∞

u(t− τ)αde
−αd(t−τ) · u(τ)αae

−αaτ dτ (3)

The currently infinite integration limits become finite (0 and t), by noting that u(t) is identically zero for
t < 0. So we may write the convolution integral as:

x(t) =

∫ t

0

αde
−αd(t−τ) · αae−αaτ dτ (4)

Let’s now evaluate this integral:

x(t) = αdαa

∫ t

0

e−αdte(αd−αa)τ dτ = αdαa(αd − αa)
[
e−αdte(αd−αa)τ

]t
0

(5)

Pluggin’ in t and 0 for the upper and lower bounds (for τ), the result of the integration becomes:

x(t) = αdαa(αd − αa)(e−αat − e−αdt) (6)

for convenience, we define

k = αdαa(αd − αa) (7)

so we may write:

x(t) = k(e−αat − e−αdt) (8)

thus, the convolution of the two exponential decays equals their scaled difference. This formula will work
only when αa 6= αd - it will give zero when they are equal. This is clearly wrong (how can this be?), and
we will treat the special case for αa = αd seperately later. Let’s now find the maximum of that curve -
requiring the derivative to vanish at the maximum:

∂

∂t
x(t) =

∂

∂t
k(e−αat − e−αdt) = k(αde

−αdt − αae−αat) = 0 (9)
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yields:
αde

−αdt = αae
−αat (10)

solving this equation for t gives us the location of the peak (which we shall denote as tp):

tp =
ln
(
αd
αa

)
αd − αa

(11)

Finally, plugging this value back into eq. 8 and simplifying, we obtain the height of the peak xp as:

xp = x(tp) = k

((
αd
αa

)− αa
αd−αa

−
(
αd
αa

)− αd
αd−αa

)
(12)

So, this xp is now the value, by which we must divide our envelope to obtain a peak excursion of unity.
However - this formula will have to be replaced by some other formula when we turn to the digital
implementation.

Some special cases

As mentioned earlier, these formulas will work only when αd and αa are distinct. We will now look at the
case where αa = αd. As the α’s are equal, we will drop the index d or a and just write α. I this case, the
convolution integral can be written as:

x(t) =

∫ t

0

αe−α(t−τ) · αe−ατ dτ = α2

∫ t

0

e−αt dτ (13)

This is a bit odd, since the integration variable τ has disappeared, so we just need to find the antiderivative
of the constant e−αt with respect to τ , and this is just τe−αt, so:

x(t) =
[
α2τe−αt

]t
0

= α2te−αt (14)

Again, taking the derivative with respect to t and requiring it to become zero, we find the location of the
peak as:

tp = 1/α = τ (15)

(here, τ is the time constant - this has nothing to do with the integration variable τ used earlier ...damn
- a notational clash here). Evaluating x(t) at tp gives the value of the peak:

xp = α/e (16)

For the case, when one of the time-constants τ (but not both) becomes zero, the impulse response of one
of the RC circuit will be just the impulse itself and the impulse response of the whole system is then the
exponential decay realized by the other RC circuit with nonzero τ . The location of the the peak is then
at time zero: tp = 0 and its height is given by the α of the other RC circuit. In formulas:

tp = 0, xp = αa for τd = 0, τa 6= 0

tp = 0, xp = αd for τd 6= 0, τa = 0
(17)

When both time consants are zero, then the impulse response of the whole system formally reduces to an
impulse of infinite height at time t = 0.
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The discrete time version

The whole derivation so far was done in the continuous time domain. We will now look at the digital
implementation. An analog RC circuit can be modeled digitally by a first order lowpass filter that realizes
the difference equation:

y[n] = b0x[n]− a1y[n− 1] (18)

where the coefficients are given by:

a1 = −e−
1
τfs , b0 = 1 + a1 (19)

where τ is the time constant of the filter as before and fs is the sample-rate. This filter has the z-domain
transfer function:

H(z) =
b0

1 + a1z−1
(20)

Again, we assume a series connection of two such filters where we consider the first one as being responsible
for the decay (so we will use bd and ad for its coefficiencts) and the second one as being responsible for
the attack (so we will use ba and aa for its coefficiencts). The transfer function of this series connection is
given by:

H(z) = Hd(z)Ha(z) =
bd

1 + adz−1

ba
1 + aaz−1

(21)

In order to find the peak location of the impulse response of this series connection, we may still use 11,
but for the height of the peak, we can’t use 12 anymore (or any of the equations that were derived for the
special cases). Instead, we need to derive new formulas specifically for the digital domain. To accomplish
this, we first need a closed form expression of the impulse response in terms of the sample-index n. We
find such an expression by expanding the transfer function into partial fractions:

H(z) =
bd

1 + adz−1

ba
1 + aaz−1

=
b1

1 + a1z−1
+

b2
1 + a2z−1

(22)

where a1, a2, b1, b2 are given by:

s = 1/(aa − ad), b1 = saababd, b2 = sadbabd, a1 = s(ad − aa)aa, a2 = s(ad − aa)ad (23)

However, this partial fraction expansion is valid only if the two poles (and consequently the two time
constants) are distinct. As in the analog case, we need to treat the special case of equal time constants
separately. Having found the partial fraction expansion of the transfer function, we can find the impulse
response by using the inverse z-transform as:

h[n] = b1a
n
1 − b2an2 for τa 6= τd (24)

In the case of equal time-constants, we will have ba = bd = b and aa = ad = a and the impulse response is
given by:

h[n] = (n+ 1)b2an for τa = τd (25)

these formulas can now be used to find the height of the peak by evaluating them at the sample index np
at which the peak occurs, and this is simply given by multiplying the time of the peak occurrence with
the sample-rate:

np = tpfs (26)
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where the formula for tp is still the same as in the analog case, namely eq. 11. This may result in a
non-integer np, indicating, that the peak actually occurs in between two samples, but this is not really
a problem in this context. If you are bothered by this fact, you may investigate the height at the floor
and at the ceiling of the computed np and pick the larger of the two values. If the attack is instantaneous
(τa = 0), the peak - of course - occurs at time zero and has a height of bd.

Finding τa given tp

We have now all the formulas in place to normalize the peak of the envelope, given the two time constants
τd and τa. For a user of this envelope generator, τd and τa is not really a convenient parametrization. More
meaningful would probably be, to let the user specify the time of the peak tp along with the decay time
τd. Unfortunately, i was not able to explicitely express τa in terms of tp and τd from 11, but i could come
up with two implicit formulas:

τa = − tp
k1 + ln(τa)

, with k1 = − tp
τd
− ln(td) (27)

and

τa = ek2−
tp
τa , with k2 =

tp
τd

+ ln(td) (28)

which may be used (together with some initial guess) in a fixed point iteration. Experiments indicate that
the first formula leads to a convergent fixed point iteration for tp ≤ τd and the second one may be used
for tp > τd.

Decaying time constant τa

As it stands, the actual decay time will be governed by τd only if the attack-time is shorter then the decay
time τd > τa - otherwise it will always be governed by whichever of the two time-constants is larger. To
put it differently, it is currently not possible to realize a long attack together with a fast decay. We may
deal with this situation by letting the attack time constant itself decay away, once we have passed tp ....
....tbc...
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